Copied to
clipboard

G = C42.165D10order 320 = 26·5

165th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.165D10, C10.1432+ 1+4, C10.1032- 1+4, C20⋊Q842C2, C202Q89C2, C4⋊C4.120D10, C422C29D5, C422D52C2, (C4×C20).9C22, D10⋊Q846C2, D102Q843C2, (C2×C20).97C23, C22⋊C4.42D10, C4.Dic1041C2, (C2×C10).256C24, C4⋊Dic5.55C22, C2.68(D48D10), C23.62(C22×D5), Dic5.Q840C2, D10.12D4.5C2, C23.D1047C2, (C22×C10).70C23, Dic5.5D4.5C2, C22.D20.4C2, C22.277(C23×D5), Dic5.14D448C2, C23.D5.70C22, D10⋊C4.48C22, C55(C22.57C24), (C2×Dic5).132C23, (C2×Dic10).45C22, (C4×Dic5).161C22, C10.D4.11C22, (C22×D5).115C23, C2.67(D4.10D10), (C22×Dic5).155C22, C4⋊C4⋊D545C2, (C2×C4×D5).146C22, (C5×C422C2)⋊11C2, (C5×C4⋊C4).207C22, (C2×C4).212(C22×D5), (C2×C5⋊D4).76C22, (C5×C22⋊C4).81C22, SmallGroup(320,1384)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.165D10
C1C5C10C2×C10C22×D5C2×C4×D5D10.12D4 — C42.165D10
C5C2×C10 — C42.165D10
C1C22C422C2

Generators and relations for C42.165D10
 G = < a,b,c,d | a4=b4=1, c10=d2=a2b2, ab=ba, cac-1=ab2, dad-1=a-1, cbc-1=a2b-1, dbd-1=b-1, dcd-1=c9 >

Subgroups: 678 in 196 conjugacy classes, 91 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C5, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, Dic5, C20, D10, C2×C10, C2×C10, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C422C2, C422C2, C4⋊Q8, Dic10, C4×D5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C22×D5, C22×C10, C22.57C24, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, C23.D5, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C22×Dic5, C2×C5⋊D4, C202Q8, C422D5, Dic5.14D4, C23.D10, D10.12D4, Dic5.5D4, C22.D20, C20⋊Q8, Dic5.Q8, C4.Dic10, D10⋊Q8, D102Q8, C4⋊C4⋊D5, C5×C422C2, C42.165D10
Quotients: C1, C2, C22, C23, D5, C24, D10, 2+ 1+4, 2- 1+4, C22×D5, C22.57C24, C23×D5, D48D10, D4.10D10, C42.165D10

Smallest permutation representation of C42.165D10
On 160 points
Generators in S160
(1 102 57 31)(2 22 58 113)(3 104 59 33)(4 24 60 115)(5 106 41 35)(6 26 42 117)(7 108 43 37)(8 28 44 119)(9 110 45 39)(10 30 46 101)(11 112 47 21)(12 32 48 103)(13 114 49 23)(14 34 50 105)(15 116 51 25)(16 36 52 107)(17 118 53 27)(18 38 54 109)(19 120 55 29)(20 40 56 111)(61 156 83 122)(62 133 84 147)(63 158 85 124)(64 135 86 149)(65 160 87 126)(66 137 88 151)(67 142 89 128)(68 139 90 153)(69 144 91 130)(70 121 92 155)(71 146 93 132)(72 123 94 157)(73 148 95 134)(74 125 96 159)(75 150 97 136)(76 127 98 141)(77 152 99 138)(78 129 100 143)(79 154 81 140)(80 131 82 145)
(1 81 47 69)(2 92 48 80)(3 83 49 71)(4 94 50 62)(5 85 51 73)(6 96 52 64)(7 87 53 75)(8 98 54 66)(9 89 55 77)(10 100 56 68)(11 91 57 79)(12 82 58 70)(13 93 59 61)(14 84 60 72)(15 95 41 63)(16 86 42 74)(17 97 43 65)(18 88 44 76)(19 99 45 67)(20 90 46 78)(21 144 102 140)(22 155 103 131)(23 146 104 122)(24 157 105 133)(25 148 106 124)(26 159 107 135)(27 150 108 126)(28 141 109 137)(29 152 110 128)(30 143 111 139)(31 154 112 130)(32 145 113 121)(33 156 114 132)(34 147 115 123)(35 158 116 134)(36 149 117 125)(37 160 118 136)(38 151 119 127)(39 142 120 138)(40 153 101 129)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 11 20)(2 19 12 9)(3 8 13 18)(4 17 14 7)(5 6 15 16)(21 40 31 30)(22 29 32 39)(23 38 33 28)(24 27 34 37)(25 36 35 26)(41 42 51 52)(43 60 53 50)(44 49 54 59)(45 58 55 48)(46 47 56 57)(61 88 71 98)(62 97 72 87)(63 86 73 96)(64 95 74 85)(65 84 75 94)(66 93 76 83)(67 82 77 92)(68 91 78 81)(69 100 79 90)(70 89 80 99)(101 112 111 102)(103 110 113 120)(104 119 114 109)(105 108 115 118)(106 117 116 107)(121 142 131 152)(122 151 132 141)(123 160 133 150)(124 149 134 159)(125 158 135 148)(126 147 136 157)(127 156 137 146)(128 145 138 155)(129 154 139 144)(130 143 140 153)

G:=sub<Sym(160)| (1,102,57,31)(2,22,58,113)(3,104,59,33)(4,24,60,115)(5,106,41,35)(6,26,42,117)(7,108,43,37)(8,28,44,119)(9,110,45,39)(10,30,46,101)(11,112,47,21)(12,32,48,103)(13,114,49,23)(14,34,50,105)(15,116,51,25)(16,36,52,107)(17,118,53,27)(18,38,54,109)(19,120,55,29)(20,40,56,111)(61,156,83,122)(62,133,84,147)(63,158,85,124)(64,135,86,149)(65,160,87,126)(66,137,88,151)(67,142,89,128)(68,139,90,153)(69,144,91,130)(70,121,92,155)(71,146,93,132)(72,123,94,157)(73,148,95,134)(74,125,96,159)(75,150,97,136)(76,127,98,141)(77,152,99,138)(78,129,100,143)(79,154,81,140)(80,131,82,145), (1,81,47,69)(2,92,48,80)(3,83,49,71)(4,94,50,62)(5,85,51,73)(6,96,52,64)(7,87,53,75)(8,98,54,66)(9,89,55,77)(10,100,56,68)(11,91,57,79)(12,82,58,70)(13,93,59,61)(14,84,60,72)(15,95,41,63)(16,86,42,74)(17,97,43,65)(18,88,44,76)(19,99,45,67)(20,90,46,78)(21,144,102,140)(22,155,103,131)(23,146,104,122)(24,157,105,133)(25,148,106,124)(26,159,107,135)(27,150,108,126)(28,141,109,137)(29,152,110,128)(30,143,111,139)(31,154,112,130)(32,145,113,121)(33,156,114,132)(34,147,115,123)(35,158,116,134)(36,149,117,125)(37,160,118,136)(38,151,119,127)(39,142,120,138)(40,153,101,129), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,40,31,30)(22,29,32,39)(23,38,33,28)(24,27,34,37)(25,36,35,26)(41,42,51,52)(43,60,53,50)(44,49,54,59)(45,58,55,48)(46,47,56,57)(61,88,71,98)(62,97,72,87)(63,86,73,96)(64,95,74,85)(65,84,75,94)(66,93,76,83)(67,82,77,92)(68,91,78,81)(69,100,79,90)(70,89,80,99)(101,112,111,102)(103,110,113,120)(104,119,114,109)(105,108,115,118)(106,117,116,107)(121,142,131,152)(122,151,132,141)(123,160,133,150)(124,149,134,159)(125,158,135,148)(126,147,136,157)(127,156,137,146)(128,145,138,155)(129,154,139,144)(130,143,140,153)>;

G:=Group( (1,102,57,31)(2,22,58,113)(3,104,59,33)(4,24,60,115)(5,106,41,35)(6,26,42,117)(7,108,43,37)(8,28,44,119)(9,110,45,39)(10,30,46,101)(11,112,47,21)(12,32,48,103)(13,114,49,23)(14,34,50,105)(15,116,51,25)(16,36,52,107)(17,118,53,27)(18,38,54,109)(19,120,55,29)(20,40,56,111)(61,156,83,122)(62,133,84,147)(63,158,85,124)(64,135,86,149)(65,160,87,126)(66,137,88,151)(67,142,89,128)(68,139,90,153)(69,144,91,130)(70,121,92,155)(71,146,93,132)(72,123,94,157)(73,148,95,134)(74,125,96,159)(75,150,97,136)(76,127,98,141)(77,152,99,138)(78,129,100,143)(79,154,81,140)(80,131,82,145), (1,81,47,69)(2,92,48,80)(3,83,49,71)(4,94,50,62)(5,85,51,73)(6,96,52,64)(7,87,53,75)(8,98,54,66)(9,89,55,77)(10,100,56,68)(11,91,57,79)(12,82,58,70)(13,93,59,61)(14,84,60,72)(15,95,41,63)(16,86,42,74)(17,97,43,65)(18,88,44,76)(19,99,45,67)(20,90,46,78)(21,144,102,140)(22,155,103,131)(23,146,104,122)(24,157,105,133)(25,148,106,124)(26,159,107,135)(27,150,108,126)(28,141,109,137)(29,152,110,128)(30,143,111,139)(31,154,112,130)(32,145,113,121)(33,156,114,132)(34,147,115,123)(35,158,116,134)(36,149,117,125)(37,160,118,136)(38,151,119,127)(39,142,120,138)(40,153,101,129), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,40,31,30)(22,29,32,39)(23,38,33,28)(24,27,34,37)(25,36,35,26)(41,42,51,52)(43,60,53,50)(44,49,54,59)(45,58,55,48)(46,47,56,57)(61,88,71,98)(62,97,72,87)(63,86,73,96)(64,95,74,85)(65,84,75,94)(66,93,76,83)(67,82,77,92)(68,91,78,81)(69,100,79,90)(70,89,80,99)(101,112,111,102)(103,110,113,120)(104,119,114,109)(105,108,115,118)(106,117,116,107)(121,142,131,152)(122,151,132,141)(123,160,133,150)(124,149,134,159)(125,158,135,148)(126,147,136,157)(127,156,137,146)(128,145,138,155)(129,154,139,144)(130,143,140,153) );

G=PermutationGroup([[(1,102,57,31),(2,22,58,113),(3,104,59,33),(4,24,60,115),(5,106,41,35),(6,26,42,117),(7,108,43,37),(8,28,44,119),(9,110,45,39),(10,30,46,101),(11,112,47,21),(12,32,48,103),(13,114,49,23),(14,34,50,105),(15,116,51,25),(16,36,52,107),(17,118,53,27),(18,38,54,109),(19,120,55,29),(20,40,56,111),(61,156,83,122),(62,133,84,147),(63,158,85,124),(64,135,86,149),(65,160,87,126),(66,137,88,151),(67,142,89,128),(68,139,90,153),(69,144,91,130),(70,121,92,155),(71,146,93,132),(72,123,94,157),(73,148,95,134),(74,125,96,159),(75,150,97,136),(76,127,98,141),(77,152,99,138),(78,129,100,143),(79,154,81,140),(80,131,82,145)], [(1,81,47,69),(2,92,48,80),(3,83,49,71),(4,94,50,62),(5,85,51,73),(6,96,52,64),(7,87,53,75),(8,98,54,66),(9,89,55,77),(10,100,56,68),(11,91,57,79),(12,82,58,70),(13,93,59,61),(14,84,60,72),(15,95,41,63),(16,86,42,74),(17,97,43,65),(18,88,44,76),(19,99,45,67),(20,90,46,78),(21,144,102,140),(22,155,103,131),(23,146,104,122),(24,157,105,133),(25,148,106,124),(26,159,107,135),(27,150,108,126),(28,141,109,137),(29,152,110,128),(30,143,111,139),(31,154,112,130),(32,145,113,121),(33,156,114,132),(34,147,115,123),(35,158,116,134),(36,149,117,125),(37,160,118,136),(38,151,119,127),(39,142,120,138),(40,153,101,129)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,11,20),(2,19,12,9),(3,8,13,18),(4,17,14,7),(5,6,15,16),(21,40,31,30),(22,29,32,39),(23,38,33,28),(24,27,34,37),(25,36,35,26),(41,42,51,52),(43,60,53,50),(44,49,54,59),(45,58,55,48),(46,47,56,57),(61,88,71,98),(62,97,72,87),(63,86,73,96),(64,95,74,85),(65,84,75,94),(66,93,76,83),(67,82,77,92),(68,91,78,81),(69,100,79,90),(70,89,80,99),(101,112,111,102),(103,110,113,120),(104,119,114,109),(105,108,115,118),(106,117,116,107),(121,142,131,152),(122,151,132,141),(123,160,133,150),(124,149,134,159),(125,158,135,148),(126,147,136,157),(127,156,137,146),(128,145,138,155),(129,154,139,144),(130,143,140,153)]])

47 conjugacy classes

class 1 2A2B2C2D2E4A···4F4G···4M5A5B10A···10F10G10H20A···20L20M···20R
order1222224···44···45510···10101020···2020···20
size11114204···420···20222···2884···48···8

47 irreducible representations

dim11111111111111122224444
type++++++++++++++++++++-+-
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2D5D10D10D102+ 1+42- 1+4D48D10D4.10D10
kernelC42.165D10C202Q8C422D5Dic5.14D4C23.D10D10.12D4Dic5.5D4C22.D20C20⋊Q8Dic5.Q8C4.Dic10D10⋊Q8D102Q8C4⋊C4⋊D5C5×C422C2C422C2C42C22⋊C4C4⋊C4C10C10C2C2
# reps11121111111111122661248

Matrix representation of C42.165D10 in GL8(𝔽41)

21337150000
28392640000
21339280000
28391320000
0000392800
000013200
0000003928
000000132
,
103900000
010390000
104000000
010400000
00000010
00000001
00001000
00000100
,
3339390000
38212270000
2238380000
39143200000
0000131300
000028900
0000002828
0000001332
,
3339390000
21382720000
2238380000
14392030000
0000131300
000092800
0000001313
000000928

G:=sub<GL(8,GF(41))| [2,28,2,28,0,0,0,0,13,39,13,39,0,0,0,0,37,26,39,13,0,0,0,0,15,4,28,2,0,0,0,0,0,0,0,0,39,13,0,0,0,0,0,0,28,2,0,0,0,0,0,0,0,0,39,13,0,0,0,0,0,0,28,2],[1,0,1,0,0,0,0,0,0,1,0,1,0,0,0,0,39,0,40,0,0,0,0,0,0,39,0,40,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[3,38,2,39,0,0,0,0,3,21,2,14,0,0,0,0,39,2,38,3,0,0,0,0,39,27,38,20,0,0,0,0,0,0,0,0,13,28,0,0,0,0,0,0,13,9,0,0,0,0,0,0,0,0,28,13,0,0,0,0,0,0,28,32],[3,21,2,14,0,0,0,0,3,38,2,39,0,0,0,0,39,27,38,20,0,0,0,0,39,2,38,3,0,0,0,0,0,0,0,0,13,9,0,0,0,0,0,0,13,28,0,0,0,0,0,0,0,0,13,9,0,0,0,0,0,0,13,28] >;

C42.165D10 in GAP, Magma, Sage, TeX

C_4^2._{165}D_{10}
% in TeX

G:=Group("C4^2.165D10");
// GroupNames label

G:=SmallGroup(320,1384);
// by ID

G=gap.SmallGroup(320,1384);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,219,1571,570,297,80,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=d^2=a^2*b^2,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a^-1,c*b*c^-1=a^2*b^-1,d*b*d^-1=b^-1,d*c*d^-1=c^9>;
// generators/relations

׿
×
𝔽